cond_barplot() conditions all variables on x by quantile binning and
shows the median or mean of the other variables for each x.
cond_barplot(
data,
x = NULL,
n = 100,
min_bin_size = NULL,
overlap = NULL,
ncols = NULL,
fill = "#2f4f4f",
auto_fill = FALSE,
show_bins = FALSE,
type = c("median", "mean"),
...
)a data.frame to be binned
character variable name used for the quantile binning
integer number of quantile bins.
integer minimum number of rows/data points that should be
in a quantile bin. If NULL it is initially sqrt(nrow(data))
logical if TRUE the quantile bins will overlap. Default value will be
FALSE.
The number of column to be used in the layout.
The color to use for the bars.
If TRUE, use a different color for each category
If TRUE, show the bins on the x-axis.
The type of statistic to use for the bars.
Additional arguments to pass to the plot functions
A list of ggplot objects.
Other conditional quantile plotting functions:
cond_boxplot(),
cond_heatmap(),
funq_plot()
# plots the expected median conditional on Sepal.Width
cond_barplot(iris, "Sepal.Width", n = 12)
# \donttest{
# plots the expected median
cond_barplot(iris, "Sepal.Width", n = 12, show_bins = TRUE)
data("diamonds", package="ggplot2")
cond_barplot(diamonds[c(1:4, 7)], "carat", auto_fill = TRUE)
if (require(palmerpenguins)) {
p <- cond_barplot(penguins[1:7], "body_mass_g", auto_fill = TRUE)
print(p)
# compare with qbin_boxplot
p <- cond_boxplot(penguins[1:7], "body_mass_g", auto_fill = TRUE)
print(p)
}
#> Loading required package: palmerpenguins
#> `overlap` not specified, using `overlap=FALSE`
#> `min_bin_size`=18, using `n=19`
#> `overlap` not specified, using `overlap=FALSE`
#> `min_bin_size`=18, using `n=19`
# }